Let ϕ:G → Homeo₊(ℝ) be an orientation preserving action of a discrete solvable group G on ℝ. In this paper, the topological transitivity of ϕ is investigated. In particular, the relations between the dynamical complexity of G and the algebraic structure of G are considered.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm116-2-5, author = {Suhua Wang and Enhui Shi and Lizhen Zhou and Grant Cairns}, title = {Topological transitivity of solvable group actions on the line $\mathbb{R}$}, journal = {Colloquium Mathematicae}, volume = {116}, year = {2009}, pages = {203-215}, zbl = {1252.37014}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm116-2-5} }
Suhua Wang; Enhui Shi; Lizhen Zhou; Grant Cairns. Topological transitivity of solvable group actions on the line ℝ. Colloquium Mathematicae, Tome 116 (2009) pp. 203-215. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm116-2-5/