Topological transitivity of solvable group actions on the line ℝ
Suhua Wang ; Enhui Shi ; Lizhen Zhou ; Grant Cairns
Colloquium Mathematicae, Tome 116 (2009), p. 203-215 / Harvested from The Polish Digital Mathematics Library

Let ϕ:G → Homeo₊(ℝ) be an orientation preserving action of a discrete solvable group G on ℝ. In this paper, the topological transitivity of ϕ is investigated. In particular, the relations between the dynamical complexity of G and the algebraic structure of G are considered.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:284165
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm116-2-5,
     author = {Suhua Wang and Enhui Shi and Lizhen Zhou and Grant Cairns},
     title = {Topological transitivity of solvable group actions on the line $\mathbb{R}$},
     journal = {Colloquium Mathematicae},
     volume = {116},
     year = {2009},
     pages = {203-215},
     zbl = {1252.37014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm116-2-5}
}
Suhua Wang; Enhui Shi; Lizhen Zhou; Grant Cairns. Topological transitivity of solvable group actions on the line ℝ. Colloquium Mathematicae, Tome 116 (2009) pp. 203-215. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm116-2-5/