On the Diophantine equation x²+2α13β=y
Florian Luca ; Alain Togbé
Colloquium Mathematicae, Tome 116 (2009), p. 139-146 / Harvested from The Polish Digital Mathematics Library

We find all the solutions of the Diophantine equation x²+2α13β=y in positive integers x,y,α,β,n ≥ 3 with x and y coprime.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:283901
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm116-1-7,
     author = {Florian Luca and Alain Togb\'e},
     title = {On the Diophantine equation $x2 + 2^{a}13^{b} = yn$
            },
     journal = {Colloquium Mathematicae},
     volume = {116},
     year = {2009},
     pages = {139-146},
     zbl = {1221.11090},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm116-1-7}
}
Florian Luca; Alain Togbé. On the Diophantine equation $x² + 2^{α}13^{β} = yⁿ$
            . Colloquium Mathematicae, Tome 116 (2009) pp. 139-146. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm116-1-7/