For μ ∈ ℂ such that Re μ > 0 let denote the class of all non-vanishing analytic functions f in the unit disk with f(0) = 1 and in . For any fixed z₀ in the unit disk, a ∈ ℂ with |a| ≤ 1 and λ ∈ ̅, we shall determine the region of variability V(z₀,λ) for log f(z₀) when f ranges over the class . In the final section we graphically illustrate the region of variability for several sets of parameters.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm116-1-3,
author = {S. Ponnusamy and A. Vasudevarao and M. Vuorinen},
title = {Region of variability for spiral-like functions with respect to a boundary point},
journal = {Colloquium Mathematicae},
volume = {116},
year = {2009},
pages = {31-46},
zbl = {1175.30018},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm116-1-3}
}
S. Ponnusamy; A. Vasudevarao; M. Vuorinen. Region of variability for spiral-like functions with respect to a boundary point. Colloquium Mathematicae, Tome 116 (2009) pp. 31-46. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm116-1-3/