For μ ∈ ℂ such that Re μ > 0 let denote the class of all non-vanishing analytic functions f in the unit disk with f(0) = 1 and in . For any fixed z₀ in the unit disk, a ∈ ℂ with |a| ≤ 1 and λ ∈ ̅, we shall determine the region of variability V(z₀,λ) for log f(z₀) when f ranges over the class . In the final section we graphically illustrate the region of variability for several sets of parameters.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm116-1-3, author = {S. Ponnusamy and A. Vasudevarao and M. Vuorinen}, title = {Region of variability for spiral-like functions with respect to a boundary point}, journal = {Colloquium Mathematicae}, volume = {116}, year = {2009}, pages = {31-46}, zbl = {1175.30018}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm116-1-3} }
S. Ponnusamy; A. Vasudevarao; M. Vuorinen. Region of variability for spiral-like functions with respect to a boundary point. Colloquium Mathematicae, Tome 116 (2009) pp. 31-46. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm116-1-3/