On area and side lengths of triangles in normed planes
Gennadiy Averkov ; Horst Martini
Colloquium Mathematicae, Tome 116 (2009), p. 101-112 / Harvested from The Polish Digital Mathematics Library

Let d be a d-dimensional normed space with norm ||·|| and let B be the unit ball in d. Let us fix a Lebesgue measure VB in d with VB(B)=1. This measure will play the role of the volume in d. We consider an arbitrary simplex T in d with prescribed edge lengths. For the case d = 2, sharp upper and lower bounds of VB(T) are determined. For d ≥ 3 it is noticed that the tight lower bound of VB(T) is zero.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:283807
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm115-1-9,
     author = {Gennadiy Averkov and Horst Martini},
     title = {On area and side lengths of triangles in normed planes},
     journal = {Colloquium Mathematicae},
     volume = {116},
     year = {2009},
     pages = {101-112},
     zbl = {1168.52007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm115-1-9}
}
Gennadiy Averkov; Horst Martini. On area and side lengths of triangles in normed planes. Colloquium Mathematicae, Tome 116 (2009) pp. 101-112. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm115-1-9/