A hit-and-miss topology () is defined for the hyperspaces , Cₙ(X) and Fₙ(X) of a continuum X. We study the relationship between and the Vietoris topology and we find conditions on X for which these topologies are equivalent.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm115-1-6, author = {Benjam\'\i n Espinoza and Ver\'onica Mart\'\i nez-de-la-Vega and Jorge M. Mart\'\i nez-Montejano}, title = {A hit-and-miss topology for $2^X$, Cn(X) and Fn(X)}, journal = {Colloquium Mathematicae}, volume = {116}, year = {2009}, pages = {47-64}, zbl = {1211.54025}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm115-1-6} }
Benjamín Espinoza; Verónica Martínez-de-la-Vega; Jorge M. Martínez-Montejano. A hit-and-miss topology for $2^X$, Cₙ(X) and Fₙ(X). Colloquium Mathematicae, Tome 116 (2009) pp. 47-64. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm115-1-6/