We construct a rank-one infinite measure preserving flow such that for each p > 0, the “diagonal” flow on the product space is ergodic.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm115-1-2, author = {Alexandre I. Danilenko and Anton V. Solomko}, title = {Infinite measure preserving flows with infinite ergodic index}, journal = {Colloquium Mathematicae}, volume = {116}, year = {2009}, pages = {13-19}, zbl = {1167.37010}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm115-1-2} }
Alexandre I. Danilenko; Anton V. Solomko. Infinite measure preserving flows with infinite ergodic index. Colloquium Mathematicae, Tome 116 (2009) pp. 13-19. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm115-1-2/