Orbit algebras and periodicity
Petter Andreas Bergh
Colloquium Mathematicae, Tome 116 (2009), p. 245-252 / Harvested from The Polish Digital Mathematics Library

Given an object in a category, we study its orbit algebra with respect to an endofunctor. We show that if the object is periodic, then its orbit algebra modulo nilpotence is a polynomial ring in one variable. This specializes to a result on Ext-algebras of periodic modules over Gorenstein algebras. We also obtain a criterion for an algebra to be of wild representation type.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:283516
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm114-2-7,
     author = {Petter Andreas Bergh},
     title = {Orbit algebras and periodicity},
     journal = {Colloquium Mathematicae},
     volume = {116},
     year = {2009},
     pages = {245-252},
     zbl = {1187.16014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm114-2-7}
}
Petter Andreas Bergh. Orbit algebras and periodicity. Colloquium Mathematicae, Tome 116 (2009) pp. 245-252. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm114-2-7/