Compactness and convergence of set-valued measures
Kenny Koffi Siggini
Colloquium Mathematicae, Tome 116 (2009), p. 177-189 / Harvested from The Polish Digital Mathematics Library

We prove criteria for relative compactness in the space of set-valued measures whose values are compact convex sets in a Banach space, and we generalize to set-valued measures the famous theorem of Dieudonné on convergence of real non-negative regular measures.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:283889
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm114-2-2,
     author = {Kenny Koffi Siggini},
     title = {Compactness and convergence of set-valued measures},
     journal = {Colloquium Mathematicae},
     volume = {116},
     year = {2009},
     pages = {177-189},
     zbl = {1161.28004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm114-2-2}
}
Kenny Koffi Siggini. Compactness and convergence of set-valued measures. Colloquium Mathematicae, Tome 116 (2009) pp. 177-189. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm114-2-2/