We prove criteria for relative compactness in the space of set-valued measures whose values are compact convex sets in a Banach space, and we generalize to set-valued measures the famous theorem of Dieudonné on convergence of real non-negative regular measures.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm114-2-2, author = {Kenny Koffi Siggini}, title = {Compactness and convergence of set-valued measures}, journal = {Colloquium Mathematicae}, volume = {116}, year = {2009}, pages = {177-189}, zbl = {1161.28004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm114-2-2} }
Kenny Koffi Siggini. Compactness and convergence of set-valued measures. Colloquium Mathematicae, Tome 116 (2009) pp. 177-189. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm114-2-2/