Let X be a real linear topological space. We characterize solutions f:X → ℝ and M:ℝ → ℝ of the equation f(x+M(f(x))y) = f(x)f(y) under the assumption that f and M have the Darboux property.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm114-1-9,
author = {Eliza Jab\l o\'nska},
title = {Functions having the Darboux property and satisfying some functional equation},
journal = {Colloquium Mathematicae},
volume = {116},
year = {2009},
pages = {113-118},
zbl = {1169.39011},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm114-1-9}
}
Eliza Jabłońska. Functions having the Darboux property and satisfying some functional equation. Colloquium Mathematicae, Tome 116 (2009) pp. 113-118. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm114-1-9/