Let X be a real linear topological space. We characterize solutions f:X → ℝ and M:ℝ → ℝ of the equation f(x+M(f(x))y) = f(x)f(y) under the assumption that f and M have the Darboux property.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm114-1-9, author = {Eliza Jab\l o\'nska}, title = {Functions having the Darboux property and satisfying some functional equation}, journal = {Colloquium Mathematicae}, volume = {116}, year = {2009}, pages = {113-118}, zbl = {1169.39011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm114-1-9} }
Eliza Jabłońska. Functions having the Darboux property and satisfying some functional equation. Colloquium Mathematicae, Tome 116 (2009) pp. 113-118. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm114-1-9/