Let R be the pullback, in the sense of Levy [J. Algebra 71 (1981)], of two local Dedekind domains. We classify all those indecomposable weak multiplication R-modules M with finite-dimensional top, that is, such that M/Rad(R)M is finite-dimensional over R/Rad(R). We also establish a connection between the weak multiplication modules and the pure-injective modules over such domains.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm114-1-8, author = {S. Ebrahimi Atani and F. Farzalipour}, title = {Weak multiplication modules over a pullback of Dedekind domains}, journal = {Colloquium Mathematicae}, volume = {116}, year = {2009}, pages = {99-112}, zbl = {1157.13007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm114-1-8} }
S. Ebrahimi Atani; F. Farzalipour. Weak multiplication modules over a pullback of Dedekind domains. Colloquium Mathematicae, Tome 116 (2009) pp. 99-112. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm114-1-8/