On the long-time behaviour of solutions of the p-Laplacian parabolic system
Paweł Goldstein
Colloquium Mathematicae, Tome 111 (2008), p. 267-278 / Harvested from The Polish Digital Mathematics Library

Convergence of global solutions to stationary solutions for a class of degenerate parabolic systems related to the p-Laplacian operator is proved. A similar result is obtained for a variable exponent p. In the case of p constant, the convergence is proved to be ¹loc, and in the variable exponent case, L² and W1,p(x)-weak.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:283606
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm113-2-8,
     author = {Pawe\l\ Goldstein},
     title = {On the long-time behaviour of solutions of the p-Laplacian parabolic system},
     journal = {Colloquium Mathematicae},
     volume = {111},
     year = {2008},
     pages = {267-278},
     zbl = {1156.35327},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm113-2-8}
}
Paweł Goldstein. On the long-time behaviour of solutions of the p-Laplacian parabolic system. Colloquium Mathematicae, Tome 111 (2008) pp. 267-278. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm113-2-8/