We show that when the conjugate of an Orlicz function ϕ satisfies the growth condition Δ⁰, then the reflexive subspaces of are closed in the L¹-norm. For that purpose, we use (and give a new proof of) a result of J. Alexopoulos saying that weakly compact subsets of such have equi-absolutely continuous norm.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm113-2-13, author = {Emmanuelle Lavergne}, title = {Reflexive subspaces of some Orlicz spaces}, journal = {Colloquium Mathematicae}, volume = {111}, year = {2008}, pages = {333-340}, zbl = {1152.46018}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm113-2-13} }
Emmanuelle Lavergne. Reflexive subspaces of some Orlicz spaces. Colloquium Mathematicae, Tome 111 (2008) pp. 333-340. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm113-2-13/