Conformal gradient vector fields on a compact Riemannian manifold
Sharief Deshmukh ; Falleh Al-Solamy
Colloquium Mathematicae, Tome 111 (2008), p. 157-161 / Harvested from The Polish Digital Mathematics Library

It is proved that if an n-dimensional compact connected Riemannian manifold (M,g) with Ricci curvature Ric satisfying 0 < Ric ≤ (n-1)(2-nc/λ₁)c for a constant c admits a nonzero conformal gradient vector field, then it is isometric to Sⁿ(c), where λ₁ is the first nonzero eigenvalue of the Laplacian operator on M. Also, it is observed that existence of a nonzero conformal gradient vector field on an n-dimensional compact connected Einstein manifold forces it to have positive scalar curvature and ultimately to be isometric to Sⁿ(c), where n(n-1)c is the scalar curvature of the manifold.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:283671
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm112-1-8,
     author = {Sharief Deshmukh and Falleh Al-Solamy},
     title = {Conformal gradient vector fields on a compact Riemannian manifold},
     journal = {Colloquium Mathematicae},
     volume = {111},
     year = {2008},
     pages = {157-161},
     zbl = {1135.53022},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm112-1-8}
}
Sharief Deshmukh; Falleh Al-Solamy. Conformal gradient vector fields on a compact Riemannian manifold. Colloquium Mathematicae, Tome 111 (2008) pp. 157-161. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm112-1-8/