Probability that an element of a finite group has a square root
M. S. Lucido ; M. R. Pournaki
Colloquium Mathematicae, Tome 111 (2008), p. 147-155 / Harvested from The Polish Digital Mathematics Library

Let G be a finite group of even order. We give some bounds for the probability p(G) that a randomly chosen element in G has a square root. In particular, we prove that p(G) ≤ 1 - ⌊√|G|⌋/|G|. Moreover, we show that if the Sylow 2-subgroup of G is not a proper normal elementary abelian subgroup of G, then p(G) ≤ 1 - 1/√|G|. Both of these bounds are best possible upper bounds for p(G), depending only on the order of G.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:286372
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm112-1-7,
     author = {M. S. Lucido and M. R. Pournaki},
     title = {Probability that an element of a finite group has a square root},
     journal = {Colloquium Mathematicae},
     volume = {111},
     year = {2008},
     pages = {147-155},
     zbl = {1146.20019},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm112-1-7}
}
M. S. Lucido; M. R. Pournaki. Probability that an element of a finite group has a square root. Colloquium Mathematicae, Tome 111 (2008) pp. 147-155. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm112-1-7/