Let τ be a type of algebras without nullary fundamental operation symbols. We call an identity φ ≈ ψ of type τ clone compatible if φ and ψ are the same variable or the sets of fundamental operation symbols in φ and ψ are nonempty and identical. For a variety of type τ we denote by the variety of type τ defined by all clone compatible identities from Id(). We call the clone extension of . In this paper we describe algebras and minimal generics of all subvarieties of , where is the variety of Boolean algebras.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm112-1-6,
author = {Jerzy P\l onka},
title = {Minimal generics from subvarieties of the clone extension of the variety of Boolean algebras},
journal = {Colloquium Mathematicae},
volume = {111},
year = {2008},
pages = {131-145},
zbl = {1140.08001},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm112-1-6}
}
Jerzy Płonka. Minimal generics from subvarieties of the clone extension of the variety of Boolean algebras. Colloquium Mathematicae, Tome 111 (2008) pp. 131-145. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm112-1-6/