The α-harmonic measure is the hitting distribution of symmetric α-stable processes upon exiting an open set in ℝⁿ (0 < α < 2, n ≥ 2). It can also be defined in the context of Riesz potential theory and the fractional Laplacian. We prove some geometric estimates for α-harmonic measure.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm111-2-8, author = {Dimitrios Betsakos}, title = {Some properties of $\alpha$-harmonic measure}, journal = {Colloquium Mathematicae}, volume = {111}, year = {2008}, pages = {297-314}, zbl = {1156.31003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm111-2-8} }
Dimitrios Betsakos. Some properties of α-harmonic measure. Colloquium Mathematicae, Tome 111 (2008) pp. 297-314. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm111-2-8/