Some properties of α-harmonic measure
Dimitrios Betsakos
Colloquium Mathematicae, Tome 111 (2008), p. 297-314 / Harvested from The Polish Digital Mathematics Library

The α-harmonic measure is the hitting distribution of symmetric α-stable processes upon exiting an open set in ℝⁿ (0 < α < 2, n ≥ 2). It can also be defined in the context of Riesz potential theory and the fractional Laplacian. We prove some geometric estimates for α-harmonic measure.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:283738
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm111-2-8,
     author = {Dimitrios Betsakos},
     title = {Some properties of $\alpha$-harmonic measure},
     journal = {Colloquium Mathematicae},
     volume = {111},
     year = {2008},
     pages = {297-314},
     zbl = {1156.31003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm111-2-8}
}
Dimitrios Betsakos. Some properties of α-harmonic measure. Colloquium Mathematicae, Tome 111 (2008) pp. 297-314. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm111-2-8/