Given a pair M,M' of finite-dimensional modules over a domestic canonical algebra Λ, we give a fully verifiable criterion, in terms of a finite set of simple linear algebra invariants, deciding if M and M' lie in the same orbit in the module variety, or equivalently, if M and M' are isomorphic.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm111-2-7, author = {Piotr Dowbor and Andrzej Mr\'oz}, title = {On a separation of orbits in the module variety for domestic canonical algebras}, journal = {Colloquium Mathematicae}, volume = {111}, year = {2008}, pages = {283-295}, zbl = {1200.16019}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm111-2-7} }
Piotr Dowbor; Andrzej Mróz. On a separation of orbits in the module variety for domestic canonical algebras. Colloquium Mathematicae, Tome 111 (2008) pp. 283-295. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm111-2-7/