We consider the set of all almost Kähler structures (g,J) on a 2n-dimensional compact orientable manifold M and study a critical point of the functional with respect to the scalar curvature τ and the *-scalar curvature τ*. We show that an almost Kähler structure (J,g) is a critical point of if and only if (J,g) is a Kähler structure on M.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm111-2-4, author = {Takashi Oguro and Kouei Sekigawa}, title = {Some critical almost K\"ahler structures}, journal = {Colloquium Mathematicae}, volume = {111}, year = {2008}, pages = {205-212}, zbl = {1176.53074}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm111-2-4} }
Takashi Oguro; Kouei Sekigawa. Some critical almost Kähler structures. Colloquium Mathematicae, Tome 111 (2008) pp. 205-212. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm111-2-4/