Let I ⊆ P(ω) be an ideal. We continue our investigation of the class of spaces with the I-ideal convergence property, denoted (I). We show that if I is an analytic, non-countably generated P-ideal then (I) ⊆ s₀. If in addition I is non-pathological and not isomorphic to , then (I) spaces have measure zero. We also present a characterization of the (I) spaces using clopen covers.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm111-1-4, author = {Jakub Jasinski and Ireneusz Rec\l aw}, title = {On spaces with the ideal convergence property}, journal = {Colloquium Mathematicae}, volume = {111}, year = {2008}, pages = {43-50}, zbl = {1143.54008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm111-1-4} }
Jakub Jasinski; Ireneusz Recław. On spaces with the ideal convergence property. Colloquium Mathematicae, Tome 111 (2008) pp. 43-50. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm111-1-4/