On spaces with the ideal convergence property
Jakub Jasinski ; Ireneusz Recław
Colloquium Mathematicae, Tome 111 (2008), p. 43-50 / Harvested from The Polish Digital Mathematics Library

Let I ⊆ P(ω) be an ideal. We continue our investigation of the class of spaces with the I-ideal convergence property, denoted (I). We show that if I is an analytic, non-countably generated P-ideal then (I) ⊆ s₀. If in addition I is non-pathological and not isomorphic to Ib, then (I) spaces have measure zero. We also present a characterization of the (I) spaces using clopen covers.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:284035
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm111-1-4,
     author = {Jakub Jasinski and Ireneusz Rec\l aw},
     title = {On spaces with the ideal convergence property},
     journal = {Colloquium Mathematicae},
     volume = {111},
     year = {2008},
     pages = {43-50},
     zbl = {1143.54008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm111-1-4}
}
Jakub Jasinski; Ireneusz Recław. On spaces with the ideal convergence property. Colloquium Mathematicae, Tome 111 (2008) pp. 43-50. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm111-1-4/