Let p be a prime number and X a simply connected Hausdorff space equipped with a free -action generated by . Let be a homeomorphism generating a free -action on the (2n-1)-sphere, whose orbit space is some lens space. We prove that, under some homotopy conditions on X, there exists an equivariant map . As applications, we derive new versions of generalized Lusternik-Schnirelmann and Borsuk-Ulam theorems.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm111-1-3, author = {T. E. Barros and C. Biasi}, title = {A note on the theorems of Lusternik-Schnirelmann and Borsuk-Ulam}, journal = {Colloquium Mathematicae}, volume = {111}, year = {2008}, pages = {35-42}, zbl = {1142.55002}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm111-1-3} }
T. E. Barros; C. Biasi. A note on the theorems of Lusternik-Schnirelmann and Borsuk-Ulam. Colloquium Mathematicae, Tome 111 (2008) pp. 35-42. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm111-1-3/