A note on the theorems of Lusternik-Schnirelmann and Borsuk-Ulam
T. E. Barros ; C. Biasi
Colloquium Mathematicae, Tome 111 (2008), p. 35-42 / Harvested from The Polish Digital Mathematics Library

Let p be a prime number and X a simply connected Hausdorff space equipped with a free p-action generated by fp:XX. Let α:S2n-1S2n-1 be a homeomorphism generating a free p-action on the (2n-1)-sphere, whose orbit space is some lens space. We prove that, under some homotopy conditions on X, there exists an equivariant map F:(S2n-1,α)(X,fp). As applications, we derive new versions of generalized Lusternik-Schnirelmann and Borsuk-Ulam theorems.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:283712
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm111-1-3,
     author = {T. E. Barros and C. Biasi},
     title = {A note on the theorems of Lusternik-Schnirelmann and Borsuk-Ulam},
     journal = {Colloquium Mathematicae},
     volume = {111},
     year = {2008},
     pages = {35-42},
     zbl = {1142.55002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm111-1-3}
}
T. E. Barros; C. Biasi. A note on the theorems of Lusternik-Schnirelmann and Borsuk-Ulam. Colloquium Mathematicae, Tome 111 (2008) pp. 35-42. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm111-1-3/