Let G be a noncyclic abelian p-group and K be an infinite field of finite characteristic p. For every 2-cocycle λ ∈ Z²(G,K*) such that the twisted group algebra is of infinite representation type, we find natural numbers d for which G has infinitely many faithful absolutely indecomposable λ-representations over K of dimension d.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm111-1-12, author = {Leonid F. Barannyk}, title = {On faithful projective representations of finite abelian p-groups over a field of characteristic p}, journal = {Colloquium Mathematicae}, volume = {111}, year = {2008}, pages = {135-147}, zbl = {1143.20006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm111-1-12} }
Leonid F. Barannyk. On faithful projective representations of finite abelian p-groups over a field of characteristic p. Colloquium Mathematicae, Tome 111 (2008) pp. 135-147. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm111-1-12/