We prove that on a metrizable, compact, zero-dimensional space every -action with no periodic points is measurably isomorphic to a minimal -action with the same, i.e. affinely homeomorphic, simplex of measures.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm110-2-9, author = {Bartosz Frej and Agata Kwa\'snicka}, title = {Minimal models for $$\mathbb{Z}$^{d}$-actions}, journal = {Colloquium Mathematicae}, volume = {111}, year = {2008}, pages = {461-476}, zbl = {1144.28007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm110-2-9} }
Bartosz Frej; Agata Kwaśnicka. Minimal models for $ℤ^{d}$-actions. Colloquium Mathematicae, Tome 111 (2008) pp. 461-476. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm110-2-9/