Finitary orbit equivalence and measured Bratteli diagrams
T. Hamachi ; M. S. Keane ; M. K. Roychowdhury
Colloquium Mathematicae, Tome 111 (2008), p. 363-382 / Harvested from The Polish Digital Mathematics Library

We prove a strengthened version of Dye's theorem on orbit equivalence, showing that if the transformation structures are represented as finite coordinate change equivalence relations of ergodic measured Bratteli diagrams, then there is a finitary orbit equivalence between these diagrams.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:284151
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm110-2-4,
     author = {T. Hamachi and M. S. Keane and M. K. Roychowdhury},
     title = {Finitary orbit equivalence and measured Bratteli diagrams},
     journal = {Colloquium Mathematicae},
     volume = {111},
     year = {2008},
     pages = {363-382},
     zbl = {1172.37004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm110-2-4}
}
T. Hamachi; M. S. Keane; M. K. Roychowdhury. Finitary orbit equivalence and measured Bratteli diagrams. Colloquium Mathematicae, Tome 111 (2008) pp. 363-382. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm110-2-4/