A celebrated result by S. Priddy states the Koszulness of any locally finite homogeneous PBW-algebra, i.e. a homogeneous graded algebra having a Poincaré-Birkhoff-Witt basis. We find sufficient conditions for a non-locally finite homogeneous PBW-algebra to be Koszul, which allows us to completely determine the cohomology of the universal Steenrod algebra at any prime.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm109-2-2, author = {Maurizio Brunetti and Adriana Ciampella}, title = {A Priddy-type Koszulness criterion for non-locally finite algebras}, journal = {Colloquium Mathematicae}, volume = {107}, year = {2007}, pages = {179-192}, zbl = {1151.16027}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm109-2-2} }
Maurizio Brunetti; Adriana Ciampella. A Priddy-type Koszulness criterion for non-locally finite algebras. Colloquium Mathematicae, Tome 107 (2007) pp. 179-192. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm109-2-2/