A Priddy-type Koszulness criterion for non-locally finite algebras
Maurizio Brunetti ; Adriana Ciampella
Colloquium Mathematicae, Tome 107 (2007), p. 179-192 / Harvested from The Polish Digital Mathematics Library

A celebrated result by S. Priddy states the Koszulness of any locally finite homogeneous PBW-algebra, i.e. a homogeneous graded algebra having a Poincaré-Birkhoff-Witt basis. We find sufficient conditions for a non-locally finite homogeneous PBW-algebra to be Koszul, which allows us to completely determine the cohomology of the universal Steenrod algebra at any prime.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:283820
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm109-2-2,
     author = {Maurizio Brunetti and Adriana Ciampella},
     title = {A Priddy-type Koszulness criterion for non-locally finite algebras},
     journal = {Colloquium Mathematicae},
     volume = {107},
     year = {2007},
     pages = {179-192},
     zbl = {1151.16027},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm109-2-2}
}
Maurizio Brunetti; Adriana Ciampella. A Priddy-type Koszulness criterion for non-locally finite algebras. Colloquium Mathematicae, Tome 107 (2007) pp. 179-192. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm109-2-2/