Top-stable and layer-stable degenerations and hom-order
S. O. Smalø ; A. Valenta
Colloquium Mathematicae, Tome 107 (2007), p. 63-71 / Harvested from The Polish Digital Mathematics Library

Using geometrical methods, Huisgen-Zimmermann showed that if M is a module with simple top, then M has no proper degeneration M<degN such that tM/t+1MtN/t+1N for all t. Given a module M with square-free top and a projective cover P, she showed that dimkHom(M,M)=dimkHom(P,M) if and only if M has no proper degeneration M<degN where M/M ≃ N/N. We prove here these results in a more general form, for hom-order instead of degeneration-order, and we prove them algebraically. The results of Huisgen-Zimmermann follow as consequences from our results. In particular, we find that her second result holds not just for modules with square-free top, but also for indecomposable modules in general.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:283943
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm108-1-6,
     author = {S. O. Smal\o\ and A. Valenta},
     title = {Top-stable and layer-stable degenerations and hom-order},
     journal = {Colloquium Mathematicae},
     volume = {107},
     year = {2007},
     pages = {63-71},
     zbl = {1113.16018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm108-1-6}
}
S. O. Smalø; A. Valenta. Top-stable and layer-stable degenerations and hom-order. Colloquium Mathematicae, Tome 107 (2007) pp. 63-71. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm108-1-6/