On the finiteness of the fundamental group of a compact shrinking Ricci soliton
Zhenlei Zhang
Colloquium Mathematicae, Tome 107 (2007), p. 297-299 / Harvested from The Polish Digital Mathematics Library

Myers's classical theorem says that a compact Riemannian manifold with positive Ricci curvature has finite fundamental group. Using Ambrose's compactness criterion or J. Lott's results, M. Fernández-López and E. García-Río showed that the finiteness of the fundamental group remains valid for a compact shrinking Ricci soliton. We give a self-contained proof of this fact by estimating the lengths of shortest geodesic loops in each homotopy class.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:283451
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm107-2-9,
     author = {Zhenlei Zhang},
     title = {On the finiteness of the fundamental group of a compact shrinking Ricci soliton},
     journal = {Colloquium Mathematicae},
     volume = {107},
     year = {2007},
     pages = {297-299},
     zbl = {1116.53027},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm107-2-9}
}
Zhenlei Zhang. On the finiteness of the fundamental group of a compact shrinking Ricci soliton. Colloquium Mathematicae, Tome 107 (2007) pp. 297-299. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm107-2-9/