Sums of reciprocals of additive functions running over short intervals
J.-M. De Koninck ; I. Kátai
Colloquium Mathematicae, Tome 107 (2007), p. 317-326 / Harvested from The Polish Digital Mathematics Library

Letting f(n) = A log n + t(n), where t(n) is a small additive function and A a positive constant, we obtain estimates for the quantities xnx+H1/f(Q(n)) and xpx+H1/f(Q(p)), where H = H(x) satisfies certain growth conditions, p runs over prime numbers and Q is a polynomial with integer coefficients, whose leading coefficient is positive, and with all its roots simple.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:284311
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm107-2-11,
     author = {J.-M. De Koninck and I. K\'atai},
     title = {Sums of reciprocals of additive functions running over short intervals},
     journal = {Colloquium Mathematicae},
     volume = {107},
     year = {2007},
     pages = {317-326},
     zbl = {1219.11142},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm107-2-11}
}
J.-M. De Koninck; I. Kátai. Sums of reciprocals of additive functions running over short intervals. Colloquium Mathematicae, Tome 107 (2007) pp. 317-326. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm107-2-11/