Pseudoprime Cullen and Woodall numbers
Florian Luca ; Igor E. Shparlinski
Colloquium Mathematicae, Tome 107 (2007), p. 35-43 / Harvested from The Polish Digital Mathematics Library

We show that if a > 1 is any fixed integer, then for a sufficiently large x>1, the nth Cullen number Cₙ = n2ⁿ +1 is a base a pseudoprime only for at most O(x log log x/log x) positive integers n ≤ x. This complements a result of E. Heppner which asserts that Cₙ is prime for at most O(x/log x) of positive integers n ≤ x. We also prove a similar result concerning the pseudoprimality to base a of the Woodall numbers given by Wₙ = n2ⁿ - 1 for all n ≥ 1.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:283410
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm107-1-5,
     author = {Florian Luca and Igor E. Shparlinski},
     title = {Pseudoprime Cullen and Woodall numbers},
     journal = {Colloquium Mathematicae},
     volume = {107},
     year = {2007},
     pages = {35-43},
     zbl = {1153.11048},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm107-1-5}
}
Florian Luca; Igor E. Shparlinski. Pseudoprime Cullen and Woodall numbers. Colloquium Mathematicae, Tome 107 (2007) pp. 35-43. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm107-1-5/