We show that if a > 1 is any fixed integer, then for a sufficiently large x>1, the nth Cullen number Cₙ = n2ⁿ +1 is a base a pseudoprime only for at most O(x log log x/log x) positive integers n ≤ x. This complements a result of E. Heppner which asserts that Cₙ is prime for at most O(x/log x) of positive integers n ≤ x. We also prove a similar result concerning the pseudoprimality to base a of the Woodall numbers given by Wₙ = n2ⁿ - 1 for all n ≥ 1.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm107-1-5, author = {Florian Luca and Igor E. Shparlinski}, title = {Pseudoprime Cullen and Woodall numbers}, journal = {Colloquium Mathematicae}, volume = {107}, year = {2007}, pages = {35-43}, zbl = {1153.11048}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm107-1-5} }
Florian Luca; Igor E. Shparlinski. Pseudoprime Cullen and Woodall numbers. Colloquium Mathematicae, Tome 107 (2007) pp. 35-43. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm107-1-5/