We define Weyl submersions, for which we derive equations analogous to the Gauss and Codazzi equations for an isometric immersion. We obtain a necessary and sufficient condition for the total space of a Weyl submersion to admit an Einstein-Weyl structure. Moreover, we investigate the Einstein-Weyl structure of canonical variations of the total space with Einstein-Weyl structure.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm107-1-11, author = {Fumio Narita}, title = {Weyl submersions of Weyl manifolds}, journal = {Colloquium Mathematicae}, volume = {107}, year = {2007}, pages = {119-140}, zbl = {1119.53032}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm107-1-11} }
Fumio Narita. Weyl submersions of Weyl manifolds. Colloquium Mathematicae, Tome 107 (2007) pp. 119-140. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm107-1-11/