A function f: ℝⁿ → ℝ satisfies the condition (resp. , ) at a point x if for each real r > 0 and for each set U ∋ x open in the Euclidean topology of ℝⁿ (resp. strong density topology, ordinary density topology) there is an open set I such that I ∩ U ≠ ∅ and . Kempisty’s theorem concerning the product quasicontinuity is investigated for the above notions.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm106-2-6, author = {Zbigniew Grande}, title = {Kempisty's theorem for the integral product quasicontinuity}, journal = {Colloquium Mathematicae}, volume = {106}, year = {2006}, pages = {257-264}, zbl = {1113.26012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm106-2-6} }
Zbigniew Grande. Kempisty's theorem for the integral product quasicontinuity. Colloquium Mathematicae, Tome 106 (2006) pp. 257-264. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm106-2-6/