A function f: ℝⁿ → ℝ satisfies the condition (resp. , ) at a point x if for each real r > 0 and for each set U ∋ x open in the Euclidean topology of ℝⁿ (resp. strong density topology, ordinary density topology) there is an open set I such that I ∩ U ≠ ∅ and . Kempisty’s theorem concerning the product quasicontinuity is investigated for the above notions.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm106-2-6,
author = {Zbigniew Grande},
title = {Kempisty's theorem for the integral product quasicontinuity},
journal = {Colloquium Mathematicae},
volume = {106},
year = {2006},
pages = {257-264},
zbl = {1113.26012},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm106-2-6}
}
Zbigniew Grande. Kempisty's theorem for the integral product quasicontinuity. Colloquium Mathematicae, Tome 106 (2006) pp. 257-264. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm106-2-6/