Kempisty's theorem for the integral product quasicontinuity
Zbigniew Grande
Colloquium Mathematicae, Tome 106 (2006), p. 257-264 / Harvested from The Polish Digital Mathematics Library

A function f: ℝⁿ → ℝ satisfies the condition Qi(x) (resp. Qs(x), Qo(x)) at a point x if for each real r > 0 and for each set U ∋ x open in the Euclidean topology of ℝⁿ (resp. strong density topology, ordinary density topology) there is an open set I such that I ∩ U ≠ ∅ and |(1/μ(UI))UIf(t)dt-f(x)|<r. Kempisty’s theorem concerning the product quasicontinuity is investigated for the above notions.

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:286524
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm106-2-6,
     author = {Zbigniew Grande},
     title = {Kempisty's theorem for the integral product quasicontinuity},
     journal = {Colloquium Mathematicae},
     volume = {106},
     year = {2006},
     pages = {257-264},
     zbl = {1113.26012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm106-2-6}
}
Zbigniew Grande. Kempisty's theorem for the integral product quasicontinuity. Colloquium Mathematicae, Tome 106 (2006) pp. 257-264. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm106-2-6/