CB-degenerations and rigid degenerations of algebras
Adam Hajduk
Colloquium Mathematicae, Tome 106 (2006), p. 305-310 / Harvested from The Polish Digital Mathematics Library

The main aim of this note is to prove that if k is an algebraically closed field and a k-algebra A₀ is a CB-degeneration of a finite-dimensional k-algebra A₁, then there exists a factor algebra Ā₀ of A₀ of the same dimension as A₁ such that Ā₀ is a CB-degeneration of A₁. As a consequence, Ā₀ is a rigid degeneration of A₁, provided A₀ is basic.

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:283758
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm106-2-10,
     author = {Adam Hajduk},
     title = {CB-degenerations and rigid degenerations of algebras},
     journal = {Colloquium Mathematicae},
     volume = {106},
     year = {2006},
     pages = {305-310},
     zbl = {1122.16013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm106-2-10}
}
Adam Hajduk. CB-degenerations and rigid degenerations of algebras. Colloquium Mathematicae, Tome 106 (2006) pp. 305-310. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm106-2-10/