The type set for homogeneous singular measures on ℝ ³ of polynomial type
E. Ferreyra ; T. Godoy
Colloquium Mathematicae, Tome 106 (2006), p. 161-175 / Harvested from The Polish Digital Mathematics Library

Let φ:ℝ ² → ℝ be a homogeneous polynomial function of degree m ≥ 2, let μ be the Borel measure on ℝ ³ defined by μ(E)=DχE(x,φ(x))dx with D = x ∈ ℝ ²:|x| ≤ 1 and let Tμ be the convolution operator with the measure μ. Let φ=φeφe be the decomposition of φ into irreducible factors. We show that if eim/2 for each φi of degree 1, then the type set Eμ:=(1/p,1/q)[0,1]×[0,1]:||Tμ||p,q< can be explicitly described as a closed polygonal region.

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:284155
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm106-2-1,
     author = {E. Ferreyra and T. Godoy},
     title = {The type set for homogeneous singular measures on $\mathbb{R}$ $^3$ of polynomial type},
     journal = {Colloquium Mathematicae},
     volume = {106},
     year = {2006},
     pages = {161-175},
     zbl = {1146.42002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm106-2-1}
}
E. Ferreyra; T. Godoy. The type set for homogeneous singular measures on ℝ ³ of polynomial type. Colloquium Mathematicae, Tome 106 (2006) pp. 161-175. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm106-2-1/