Let φ:ℝ ² → ℝ be a homogeneous polynomial function of degree m ≥ 2, let μ be the Borel measure on ℝ ³ defined by with D = x ∈ ℝ ²:|x| ≤ 1 and let be the convolution operator with the measure μ. Let be the decomposition of φ into irreducible factors. We show that if for each of degree 1, then the type set can be explicitly described as a closed polygonal region.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm106-2-1,
author = {E. Ferreyra and T. Godoy},
title = {The type set for homogeneous singular measures on $\mathbb{R}$ $^3$ of polynomial type},
journal = {Colloquium Mathematicae},
volume = {106},
year = {2006},
pages = {161-175},
zbl = {1146.42002},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm106-2-1}
}
E. Ferreyra; T. Godoy. The type set for homogeneous singular measures on ℝ ³ of polynomial type. Colloquium Mathematicae, Tome 106 (2006) pp. 161-175. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm106-2-1/