We obtain interpolation inequalities for derivatives: , and their counterparts expressed in Orlicz norms: ||∇f||²(q,α) ≤ C||Φ₁(x,|f|,|∇(2)f|)||(p,β) ||Φ₂(x,|f|,|∇(2)f|)||(r,γ)where is the Orlicz norm relative to the function . The parameters p,q,r,α,β,γ and the Carathéodory functions Φ₁,Φ₂ are supposed to satisfy certain consistency conditions. Some of the classical Gagliardo-Nirenberg inequalities follow as a special case. Gagliardo-Nirenberg inequalities in logarithmic spaces with higher order gradients are also considered.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm106-1-8, author = {Agnieszka Ka\l amajska and Katarzyna Pietruska-Pa\l uba}, title = {Gagliardo-Nirenberg inequalities in logarithmic spaces}, journal = {Colloquium Mathematicae}, volume = {106}, year = {2006}, pages = {93-107}, zbl = {1091.26013}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm106-1-8} }
Agnieszka Kałamajska; Katarzyna Pietruska-Pałuba. Gagliardo-Nirenberg inequalities in logarithmic spaces. Colloquium Mathematicae, Tome 106 (2006) pp. 93-107. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm106-1-8/