Let X be an irreducible nonsingular complex algebraic set and let K be a compact subset of X. We study algebraic properties of the ring of rational functions on X without poles in K. We give simple necessary conditions for this ring to be a regular ring or a unique factorization domain.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm106-1-10, author = {W. Kucharz}, title = {Rational functions without poles in a compact set}, journal = {Colloquium Mathematicae}, volume = {106}, year = {2006}, pages = {119-125}, zbl = {1091.14003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm106-1-10} }
W. Kucharz. Rational functions without poles in a compact set. Colloquium Mathematicae, Tome 106 (2006) pp. 119-125. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm106-1-10/