Rational functions without poles in a compact set
W. Kucharz
Colloquium Mathematicae, Tome 106 (2006), p. 119-125 / Harvested from The Polish Digital Mathematics Library

Let X be an irreducible nonsingular complex algebraic set and let K be a compact subset of X. We study algebraic properties of the ring of rational functions on X without poles in K. We give simple necessary conditions for this ring to be a regular ring or a unique factorization domain.

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:286242
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm106-1-10,
     author = {W. Kucharz},
     title = {Rational functions without poles in a compact set},
     journal = {Colloquium Mathematicae},
     volume = {106},
     year = {2006},
     pages = {119-125},
     zbl = {1091.14003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm106-1-10}
}
W. Kucharz. Rational functions without poles in a compact set. Colloquium Mathematicae, Tome 106 (2006) pp. 119-125. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm106-1-10/