This paper studies the Hochschild cohomology of finite-dimensional monomial algebras. If Λ = K/I with I an admissible monomial ideal, then we give sufficient conditions for the existence of an embedding of into the Hochschild cohomology ring HH*(Λ). We also introduce stacked algebras, a new class of monomial algebras which includes Koszul and D-Koszul monomial algebras. If Λ is a stacked algebra, we prove that , where is the ideal in HH*(Λ) generated by the homogeneous nilpotent elements. In particular, this shows that the Hochschild cohomology ring of Λ modulo nilpotence is finitely generated as an algebra.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm105-2-6, author = {Edward L. Green and Nicole Snashall}, title = {The Hochschild cohomology ring modulo nilpotence of a stacked monomial algebra}, journal = {Colloquium Mathematicae}, volume = {106}, year = {2006}, pages = {233-258}, zbl = {1110.16008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm105-2-6} }
Edward L. Green; Nicole Snashall. The Hochschild cohomology ring modulo nilpotence of a stacked monomial algebra. Colloquium Mathematicae, Tome 106 (2006) pp. 233-258. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm105-2-6/