On some representations of almost everywhere continuous functions on m
Ewa Strońska
Colloquium Mathematicae, Tome 106 (2006), p. 319-331 / Harvested from The Polish Digital Mathematics Library

It is proved that the following conditions are equivalent: (a) f is an almost everywhere continuous function on m; (b) f = g + h, where g,h are strongly quasicontinuous on m; (c) f = c + gh, where c ∈ ℝ and g,h are strongly quasicontinuous on m.

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:286226
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm105-2-12,
     author = {Ewa Stro\'nska},
     title = {On some representations of almost everywhere continuous functions on $$\mathbb{R}$^{m}$
            },
     journal = {Colloquium Mathematicae},
     volume = {106},
     year = {2006},
     pages = {319-331},
     zbl = {1098.26009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm105-2-12}
}
Ewa Strońska. On some representations of almost everywhere continuous functions on $ℝ^{m}$
            . Colloquium Mathematicae, Tome 106 (2006) pp. 319-331. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm105-2-12/