Let Λ be an artin algebra. We prove that for each sequence of non-negative integers there are only a finite number of isomorphism classes of indecomposables , the bounded derived category of Λ, with for all i ∈ ℤ and E(X) the endomorphism ring of X in if and only if , the bounded derived category of the category of all left Λ-modules, has no generic objects in the sense of [4].
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm105-2-10, author = {Raymundo Bautista}, title = {Derived endo-discrete artin algebras}, journal = {Colloquium Mathematicae}, volume = {106}, year = {2006}, pages = {297-310}, zbl = {1103.16012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm105-2-10} }
Raymundo Bautista. Derived endo-discrete artin algebras. Colloquium Mathematicae, Tome 106 (2006) pp. 297-310. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm105-2-10/