Derived endo-discrete artin algebras
Raymundo Bautista
Colloquium Mathematicae, Tome 106 (2006), p. 297-310 / Harvested from The Polish Digital Mathematics Library

Let Λ be an artin algebra. We prove that for each sequence (hi)i of non-negative integers there are only a finite number of isomorphism classes of indecomposables Xb(Λ), the bounded derived category of Λ, with lengthE(X)Hi(X)=hi for all i ∈ ℤ and E(X) the endomorphism ring of X in b(Λ) if and only if b(ModΛ), the bounded derived category of the category ModΛ of all left Λ-modules, has no generic objects in the sense of [4].

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:283566
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm105-2-10,
     author = {Raymundo Bautista},
     title = {Derived endo-discrete artin algebras},
     journal = {Colloquium Mathematicae},
     volume = {106},
     year = {2006},
     pages = {297-310},
     zbl = {1103.16012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm105-2-10}
}
Raymundo Bautista. Derived endo-discrete artin algebras. Colloquium Mathematicae, Tome 106 (2006) pp. 297-310. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm105-2-10/