On a metric measure space (X,ϱ,μ), consider the weight functions if ϱ(x,z₀) < 1, if ϱ(x,z₀) ≥ 1, if ϱ(x,z₀) < 1, if ϱ(x,z₀) ≥ 1, where z₀ is a given point of X, and let be an operator kernel satisfying for all x,y ∈ X such that ϱ(x,y) < 1, for all x,y ∈ X such that ϱ(x,y)≥ 1, where 0 < a < min(d,D), and d and D are respectively the local and global volume growth rate of the space X. We determine conditions on a, α₀, α₁, β₀, β₁ ∈ ℝ for the Hardy-Littlewood-Sobolev operator with kernel to be bounded from to for 1 < p ≤ q < ∞.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm105-1-9, author = {David Mascr\'e}, title = {In\'egalit\'es \`a poids pour l'op\'erateur de Hardy-Littlewood-Sobolev dans les espaces m\'etriques mesur\'es \`a deux demi-dimensions}, journal = {Colloquium Mathematicae}, volume = {106}, year = {2006}, pages = {77-104}, zbl = {1119.42007}, language = {fra}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm105-1-9} }
David Mascré. Inégalités à poids pour l'opérateur de Hardy-Littlewood-Sobolev dans les espaces métriques mesurés à deux demi-dimensions. Colloquium Mathematicae, Tome 106 (2006) pp. 77-104. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm105-1-9/