The aim of this paper is to analyze the well posedness of the one-phase quasi-stationary Stefan problem with the Gibbs-Thomson correction in a two-dimensional domain which is a perturbation of the half plane. We show the existence of a unique regular solution for an arbitrary time interval, under suitable smallness assumptions on initial data. The existence is shown in the Besov-Slobodetskiĭ class with sharp regularity in the L₂-framework.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm105-1-14, author = {Piotr Bogus\l aw Mucha}, title = {Stefan problem in a 2D case}, journal = {Colloquium Mathematicae}, volume = {106}, year = {2006}, pages = {149-165}, zbl = {1099.35179}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm105-1-14} }
Piotr Bogusław Mucha. Stefan problem in a 2D case. Colloquium Mathematicae, Tome 106 (2006) pp. 149-165. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm105-1-14/