Stefan problem in a 2D case
Piotr Bogusław Mucha
Colloquium Mathematicae, Tome 106 (2006), p. 149-165 / Harvested from The Polish Digital Mathematics Library

The aim of this paper is to analyze the well posedness of the one-phase quasi-stationary Stefan problem with the Gibbs-Thomson correction in a two-dimensional domain which is a perturbation of the half plane. We show the existence of a unique regular solution for an arbitrary time interval, under suitable smallness assumptions on initial data. The existence is shown in the Besov-Slobodetskiĭ class with sharp regularity in the L₂-framework.

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:284366
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm105-1-14,
     author = {Piotr Bogus\l aw Mucha},
     title = {Stefan problem in a 2D case},
     journal = {Colloquium Mathematicae},
     volume = {106},
     year = {2006},
     pages = {149-165},
     zbl = {1099.35179},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm105-1-14}
}
Piotr Bogusław Mucha. Stefan problem in a 2D case. Colloquium Mathematicae, Tome 106 (2006) pp. 149-165. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm105-1-14/