We prove: (I) For all integers n ≥ 2 and real numbers x ∈ (0,π) we have , with the best possible constant bounds α = (15-√2073)/10240 √(1998-10√2073) = -0.1171..., β = 1/3. (II) The inequality holds for all even integers n ≥ 2 and x ∈ (0,π), and also for all odd integers n ≥ 3 and x ∈ (0,π - π/n].
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm105-1-11, author = {Horst Alzer and Stamatis Koumandos}, title = {Inequalities for two sine polynomials}, journal = {Colloquium Mathematicae}, volume = {106}, year = {2006}, pages = {127-134}, zbl = {1091.26009}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm105-1-11} }
Horst Alzer; Stamatis Koumandos. Inequalities for two sine polynomials. Colloquium Mathematicae, Tome 106 (2006) pp. 127-134. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm105-1-11/