A basis of Zₘ
Min Tang ; Yong-Gao Chen
Colloquium Mathematicae, Tome 106 (2006), p. 99-103 / Harvested from The Polish Digital Mathematics Library

Let σA(n)=|(a,a')A²:a+a'=n|, where n ∈ N and A is a subset of N. Erdős and Turán conjectured that for any basis A of order 2 of N, σA(n) is unbounded. In 1990, Imre Z. Ruzsa constructed a basis A of order 2 of N for which σA(n) is bounded in the square mean. In this paper, we show that there exists a positive integer m₀ such that, for any integer m ≥ m₀, we have a set A ⊂ Zₘ such that A + A = Zₘ and σA(n̅)768 for all n̅ ∈ Zₘ.

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:286391
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm104-1-6,
     author = {Min Tang and Yong-Gao Chen},
     title = {A basis of Zm},
     journal = {Colloquium Mathematicae},
     volume = {106},
     year = {2006},
     pages = {99-103},
     zbl = {1138.11003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm104-1-6}
}
Min Tang; Yong-Gao Chen. A basis of Zₘ. Colloquium Mathematicae, Tome 106 (2006) pp. 99-103. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm104-1-6/