For a subset and , the local Hausdorff dimension function of E at x is defined by where denotes the Hausdorff dimension. We give a complete characterization of the set of functions that are local Hausdorff dimension functions. In fact, we prove a significantly more general result, namely, we give a complete characterization of those functions that are local dimension functions of an arbitrary regular dimension index.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm103-2-8, author = {L. Olsen}, title = {Characterization of local dimension functions of subsets of $$\mathbb{R}$^{d}$ }, journal = {Colloquium Mathematicae}, volume = {103}, year = {2005}, pages = {231-239}, zbl = {1105.28007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm103-2-8} }
L. Olsen. Characterization of local dimension functions of subsets of $ℝ^{d}$ . Colloquium Mathematicae, Tome 103 (2005) pp. 231-239. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm103-2-8/