Characterization of local dimension functions of subsets of d
L. Olsen
Colloquium Mathematicae, Tome 103 (2005), p. 231-239 / Harvested from The Polish Digital Mathematics Library

For a subset Ed and xd, the local Hausdorff dimension function of E at x is defined by dimH,loc(x,E)=limr0dimH(EB(x,r)) where dimH denotes the Hausdorff dimension. We give a complete characterization of the set of functions that are local Hausdorff dimension functions. In fact, we prove a significantly more general result, namely, we give a complete characterization of those functions that are local dimension functions of an arbitrary regular dimension index.

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:284206
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm103-2-8,
     author = {L. Olsen},
     title = {Characterization of local dimension functions of subsets of $$\mathbb{R}$^{d}$
            },
     journal = {Colloquium Mathematicae},
     volume = {103},
     year = {2005},
     pages = {231-239},
     zbl = {1105.28007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm103-2-8}
}
L. Olsen. Characterization of local dimension functions of subsets of $ℝ^{d}$
            . Colloquium Mathematicae, Tome 103 (2005) pp. 231-239. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm103-2-8/