Regular sets and conditional density: an extension of Benford's law
Rita Giuliano Antonini ; Georges Grekos
Colloquium Mathematicae, Tome 103 (2005), p. 173-192 / Harvested from The Polish Digital Mathematics Library

We give an extension of Benford's law (first digit problem) by using the concept of conditional density, introduced by Fuchs and Letta. The main tool is the notion of regular subset of integers.

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:284153
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm103-2-3,
     author = {Rita Giuliano Antonini and Georges Grekos},
     title = {Regular sets and conditional density: an extension of Benford's law},
     journal = {Colloquium Mathematicae},
     volume = {103},
     year = {2005},
     pages = {173-192},
     zbl = {1092.11009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm103-2-3}
}
Rita Giuliano Antonini; Georges Grekos. Regular sets and conditional density: an extension of Benford's law. Colloquium Mathematicae, Tome 103 (2005) pp. 173-192. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm103-2-3/