We give necessary and sufficient conditions for a wing of an Auslander-Reiten quiver of a selfinjective algebra to be the wing of the radical of an indecomposable projective module. Moreover, a characterization of indecomposable Nakayama algebras of Loewy length ≥ 3 is obtained.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm103-2-11, author = {Marta Kwiecie\'n and Andrzej Skowro\'nski}, title = {On wings of the Auslander-Reiten quivers of selfinjective algebras}, journal = {Colloquium Mathematicae}, volume = {103}, year = {2005}, pages = {265-285}, zbl = {1110.16012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm103-2-11} }
Marta Kwiecień; Andrzej Skowroński. On wings of the Auslander-Reiten quivers of selfinjective algebras. Colloquium Mathematicae, Tome 103 (2005) pp. 265-285. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm103-2-11/