Nonaliquots and Robbins numbers
William D. Banks ; Florian Luca
Colloquium Mathematicae, Tome 103 (2005), p. 27-32 / Harvested from The Polish Digital Mathematics Library

Let φ(·) and σ(·) denote the Euler function and the sum of divisors function, respectively. We give a lower bound for the number of m ≤ x for which the equation m = σ(n) - n has no solution. We also show that the set of positive integers m not of the form (p-1)/2 - φ(p-1) for some prime number p has a positive lower asymptotic density.

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:284093
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm103-1-4,
     author = {William D. Banks and Florian Luca},
     title = {Nonaliquots and Robbins numbers},
     journal = {Colloquium Mathematicae},
     volume = {103},
     year = {2005},
     pages = {27-32},
     zbl = {1089.11007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm103-1-4}
}
William D. Banks; Florian Luca. Nonaliquots and Robbins numbers. Colloquium Mathematicae, Tome 103 (2005) pp. 27-32. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm103-1-4/