A positive integer n is called E-symmetric if there exists a positive integer m such that |m-n| = (ϕ(m),ϕ(n)), and n is called E-asymmetric if it is not E-symmetric. We show that there are infinitely many E-symmetric and E-asymmetric primes.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm103-1-3, author = {Gang Yu}, title = {E-symmetric numbers}, journal = {Colloquium Mathematicae}, volume = {103}, year = {2005}, pages = {17-25}, zbl = {1078.11005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm103-1-3} }
Gang Yu. E-symmetric numbers. Colloquium Mathematicae, Tome 103 (2005) pp. 17-25. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm103-1-3/