The multiplicative and functional independence of Dedekind zeta functions of abelian fields
Roman Marszałek
Colloquium Mathematicae, Tome 103 (2005), p. 11-16 / Harvested from The Polish Digital Mathematics Library

It is shown that the multiplicative independence of Dedekind zeta functions of abelian fields is equivalent to their functional independence. We also give all the possible multiplicative dependence relations for any set of Dedekind zeta functions of abelian fields.

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:283903
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm103-1-2,
     author = {Roman Marsza\l ek},
     title = {The multiplicative and functional independence of Dedekind zeta functions of abelian fields},
     journal = {Colloquium Mathematicae},
     volume = {103},
     year = {2005},
     pages = {11-16},
     zbl = {1089.11063},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm103-1-2}
}
Roman Marszałek. The multiplicative and functional independence of Dedekind zeta functions of abelian fields. Colloquium Mathematicae, Tome 103 (2005) pp. 11-16. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm103-1-2/