Pointwise convergence of nonconventional averages
I. Assani
Colloquium Mathematicae, Tome 103 (2005), p. 245-262 / Harvested from The Polish Digital Mathematics Library

We answer a question of H. Furstenberg on the pointwise convergence of the averages 1/Nn=1NU(f·R(g)), where U and R are positive operators. We also study the pointwise convergence of the averages 1/Nn=1Nf(Sx)g(Rx) when T and S are measure preserving transformations.

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:283815
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm102-2-6,
     author = {I. Assani},
     title = {Pointwise convergence of nonconventional averages},
     journal = {Colloquium Mathematicae},
     volume = {103},
     year = {2005},
     pages = {245-262},
     zbl = {1077.37001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm102-2-6}
}
I. Assani. Pointwise convergence of nonconventional averages. Colloquium Mathematicae, Tome 103 (2005) pp. 245-262. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm102-2-6/