Separated sequences in uniformly convex Banach spaces
J. M. A. M. van Neerven
Colloquium Mathematicae, Tome 103 (2005), p. 147-153 / Harvested from The Polish Digital Mathematics Library

We give a characterization of uniformly convex Banach spaces in terms of a uniform version of the Kadec-Klee property. As an application we prove that if (xₙ) is a bounded sequence in a uniformly convex Banach space X which is ε-separated for some 0 < ε ≤ 2, then for all norm one vectors x ∈ X there exists a subsequence (xnj) of (xₙ) such that infjk||x-(xnj-xnk)||1+δX(2/3ε), where δX is the modulus of convexity of X. From this we deduce that the unit sphere of every infinite-dimensional uniformly convex Banach space contains a (1+1/2δX(2/3))-separated sequence.

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:284135
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm102-1-13,
     author = {J. M. A. M. van Neerven},
     title = {Separated sequences in uniformly convex Banach spaces},
     journal = {Colloquium Mathematicae},
     volume = {103},
     year = {2005},
     pages = {147-153},
     zbl = {1087.46013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm102-1-13}
}
J. M. A. M. van Neerven. Separated sequences in uniformly convex Banach spaces. Colloquium Mathematicae, Tome 103 (2005) pp. 147-153. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm102-1-13/