κ-deformation, affine group and spectral triples
Bruno Iochum ; Thierry Masson ; Andrzej Sitarz
Banach Center Publications, Tome 97 (2012), p. 261-291 / Harvested from The Polish Digital Mathematics Library

A regular spectral triple is proposed for a two-dimensional κ-deformation. It is based on the naturally associated affine group G, a smooth subalgebra of C*(G), and an operator 𝓓 defined by two derivations on this subalgebra. While 𝓓 has metric dimension two, the spectral dimension of the triple is one. This bypasses an obstruction described in [35] on existence of finitely-summable spectral triples for a compactified κ-deformation.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:282379
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc98-0-11,
     author = {Bruno Iochum and Thierry Masson and Andrzej Sitarz},
     title = {$\kappa$-deformation, affine group and spectral triples},
     journal = {Banach Center Publications},
     volume = {97},
     year = {2012},
     pages = {261-291},
     zbl = {1272.58014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc98-0-11}
}
Bruno Iochum; Thierry Masson; Andrzej Sitarz. κ-deformation, affine group and spectral triples. Banach Center Publications, Tome 97 (2012) pp. 261-291. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc98-0-11/